Kondenssiveden kertyminen

Kondenssiveden kertyminen on kosteuden tiivistymistä viileille pinnoille. Kylmän rakenneosan viereisen ilmakerroksen lämpötila laskee. Kun ilman lämpötila laskee, samalla sen kyky sitoa kosteutta heikkenee ja ilma joutuu luovuttamaan ylimääräisen veden nestemäisenä viileälle pinnalle: pinnalle kondensoituu vettä, ks. kuva 8. Rajalämpötilaa, jossa tämä prosessi tapahtuu, kutsutaan kastepisteeksi.

Kastepiste riippuu sisäilman lämpötilasta ja kosteudesta (ks. kuva 10). Kun ilman suhteellinen kosteus kasvaa ja lämpötila nousee, nousee samalla myös kastepisteen lämpötila, jolloin vesi tiivistyy kylmille pinnoille entistä herkemmin.

Sisäilman lämpötila on tyypillisesti noin 20 °C ja suhteellinen kosteus 50 %. Tällöin kastepiste on 9,3 °C. Säännöllisesti kosteudelle altistuvissa tiloissa, kuten kylpyhuoneissa, suhteellinen kosteus voi helposti olla 60 % tai enemmänkin. Tämä nostaa myös kastepistettä ja lisää kondenssiveden muodostumisen riskiä. Kun huoneen suhteellinen kosteus on 60 %, kastepiste on jo 12,0 °C.

Kuvassa 10 olevan käyrän jyrkkyydestä käy ilmi tämä kastepisteen herkkä riippuvuus huoneilman suhteellisesta kosteudesta: pienikin kosteuden lisääntyminen aiheuttaa kastepisteen merkittävän nousun. Tämä lisää myös merkittävästi rakenteiden kylmille pinnoille kertyvän kondenssiveden riskiä.

Esimerkkejä: Ulkoseinää vasten sijoitetun kaapin takana kosteus voi tiivistyä, koska pinnat eivät saa juurikaan lämpöä huoneesta ja siksi jäähtyvät. Verhot voivat aiheuttaa vastaavan tilanteen, jossa ikkunan viereen verhon taakse tiivistyy kondenssivettä.

Rakennekomponentin sisälle tiivistyvä kosteus

EN ISO 13788-standardin mukaisen Glaser-menetelmän avulla voidaan määrittää kondenssiveden muodostumisriski sekä odotettavissa olevan kertyvän kondenssiveden määrä, kun olosuhteet rakenteen molemmin puolin säilyvät muuttumattomina Tämä ehto ei useinkaan täyty.

Glaser-menetelmän rajoitukset vältetään nykyään käyttämällä dynaamisia kosteuden ja lämpötilan laskentamalleja. Dynaamisilla malleilla saadaan yksityiskohtaisempaa ja tarkempaa tietoa rakenteiden kosteusfysikaalisesta toiminnasta. Mallit ottavat huomioon lämmön ja kosteuden diffuusion lisäksi lämmön ja kosteuden varastoinnin materiaaleissa, faasimuutokset sekä ilman ja nesteen liikkeen. Myös säätiedot sekä muut reuna- ja alkuehdot voidaan kuvata realistisesti. Viime vuosina dynaamisten mallien käyttö on lisännyt huomattavasti käytännön kosteuslaskelmien luotettavuutta sekä toistettavuutta. Laskenta suoritetaan standardin EN 15026 mukaan.